
Observations on the integral of the

formulas

∫
xp−1dx(1− xn)

q
n−1

having

put x = 1 after the integration*

Leonhard Euler

§1 Going to consider the integral formula∫
xp−1dx(1− xn)

q
n−1

or expressed this way

∫ xp−1dx
n
√
(1− xn)

n−q

here, I assume the exponents n, p and q to be positive integer numbers, since,
if they were not such numbers, they could easily be reduced to this form.
Further, I decided not to consider the integral of this formula in general, but
only its value, which it obtains, if after the integration one sets x = 1, after the
integration was performed in such a way, of course, that the integral vanishes
for x = 0. For, first there is no doubt that in this case x = 1 the integral is
expressed a lot simpler; and furthermore, as often as in Analysis one gets to
formulas of this kind, mostly not so the indefinite integral for an arbitrary
value of x as for the definite value x = 1 used to be especially desired.

*Original title: „Observationes circa integralia formularum
∫

xp−1dx(1− xn)
q
n−1 posito post

integrationem x = 1 „ Melanges de philosophie et de la mathematique de la societe royale de
Turin 3, 1766, pp. 156-177“, reprinted in „Opera Omnia: Series 1, Volume 17, pp. 269 -
288“, Eneström-Number E321, translated by: Alexander Aycock for the project „Euler-Kreis
Mainz“
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§2 But it is known that in the case, in which after the integration one puts
x = 1, the integral

∫ xp−1dx
n
√

(1−xn)n−q
is expressed by means of a product of infinitely

many factors this way that it is

p + q
pq
· n(p + q + n)
(p + n)(q + n)

· 2n(p + q + 2n)
(p + 2n)(q + 2n)

· 3n(p + q + 3n)
(p + 3n)(q + 3n)

· etc.,

the first factor p+q
pq of which is certainly not restricted by the law of the

following. But since there is no obstruction to it, it is nevertheless perspicuous
that the exponent p and q are commutable, such that it is∫

xp−1dx(1− xn)
q
n−1 =

∫
xq−1dx(1− xn)

p
n−1,

which equality is also easily shown per se. But this infinite product will lead
us to other much greater ones, by which these integrals will be illustrated
more.

§3 But in order to use a short notation and not always to have to write out
the formula

∫
xp−1dx(1− xn)

q
n−1, for each exponent n I will write for it(

p
q

)
,

such that
(

p
q

)
denotes the value of the integral formula

∫
xp−1dx(1− xn)

q
n−1

in the case, in which after the integration one puts x = 1. And since we saw
that in this case it is∫

xp−1dx(1− xn)
q
n−1 =

∫
xq−1dx(1− xn)

p
n−1,

it is manifest that it will be (
p
q

)
=

(
q
p

)
,

such that for each value of the exponent n these expressions
(

p
q

)
and

(
q
p

)
signify the same quantity. So if, for the sake of an example, it was n = 4, it
will be (

3
2

)
=

(
2
3

)
=
∫ x2dx

4
√
(1− x4)2

=
xdx

4
√

1− x4
.
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But by means of the infinite product one will have(
3
2

)
=

(
2
3

)
=

5
2 · 3 ·

4 · 9
6 · 7 ·

8 · 13
10 · 11

· 12 · 17
14 · 15

· etc.

§4 First, I now observe, if the exponents p and q were larger than the
exponent n, that the integral formula can always be reduced to another one,
in which these exponents are lowered below n. For, because since it is

∫ xp−1dx
n
√
(1− xn)n−q

=
p− n

p + q− n

∫ xp−n−1dx
n
√
(1− xn)n−q

,

in our notation it will be(
p
q

)
=

p− n
p + q− n

(
p− n

q

)
,

by which, if it was p > n, the formula is reduced to another one, in which
the exponent p is smaller than n, which is to be understood also for the
other exponent q because of the commutability. Therefore, for us going to
examine these formulas, it will be sufficient for each exponent n to assume
the exponents p and q smaller than n, since having discussed those all cases,
in which they would have larger values, can be reduced to this.

§5 But it is immediately plain that the cases, in which it is either p = n or
q = n, are absolutely or algebraically integrable. For, if it was q = n, because
of ( p

n

)
=
∫

xp−1dx =
xp

p

having put x = 1 it will be
( p

n

)
= 1

n and in similar manner
(

n
q

)
= 1

q .
And these are the only cases, in which the integral of our formula can be
exhibited absolutely, if p and q do not exceed the exponent n, of course. In all
remaining cases the integration will imply either the quadrature of the circle
or even higher quadratures, which we intend to consider more accurately here.
Therefore, after the formulas

( p
n

)
or
(

n
p

)
, whose absolute value is = 1

p , those
come, whose values are expressed by means of the quadrature of the circle
alone; but then these will follow, which require a certain higher quadrature,
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and I will try to reduce these higher quadratures so to the simplest form as to
the smallest number.

§6 Since the numbers p and q are put smaller than the exponent n, those
formulas

(
p
q

)
become integrable by means of the quadrature of the circle

alone, in which it is p + q = n. For, let it be q = n− p and our formula(
p

n− p

)
=

(
n− p

p

)
=
∫ xp−1dx

n
√
(1− xn)p

=
∫ xq−1dx

n
√
(1− xn)q

will be expressed by means of this infinite product

n
p(n− p)

· n · 2n
(n + p)(2n− p)

· 2n · 3n
(2n + p)((3n− p)

· 3n · 4n
(3n + p)(4n− p)

· etc.,

which represented this way

1
p
· nn

nn− pp
· 4nn

4nn− pp
· 9nn

9nn− pp
· etc.

agrees to the product, by which I expressed the sine of angles. Hence, if π is
taken for the half of the circumference of the circle, whose radius is = 1, and
at the same time exhibits the measure of two right angles, it will be(

p
n− p

)
=

(
n− p

p

)
=

π

n sin pπ
n

=
π

n sin qπ
n

.

§7 In the remaining cases, in which it is neither p = n nor q = n and also
not p + q = n, the integral can neither be exhibited absolutely nor by the
quadrature of the circle, but contains other certain higher quadratures. But
on the other the single cases do not require a peculiar quadrature of this
kind, but many reductions are given, by which it is possible to compare the
different formulas to each other. But these reductions are derived from the
infinite product exhibited above; for, because it it is(

p
q

)
=

p + q
pq
· n(p + q + n)
(p + n)(q + n)

· 2n(p + q + 2n)
(p + 2n)(q + 2n)

· etc.,

it will be in similar manner

4



(
p + q

r

)
=

p + q + r
(p + q)r

· n(p + q + r + n)
(p + q + n)(r + n)

· 2n(p + q + r + 2n)
(p + q + 2n)(r + 2n)

· etc.,

having multiplied which by each other one obtains

(
p
q

)(
p + q

r

)
=

p + q + r
pqr

· nn(p + q + r + n)
(p + n)(q + n)(r + n)

· 4nn(p + q + r + 2n)
(p + 2n)(q + 2n)(r + 2n)

· etc.,

where the three quantities p, q, r are interchangeable.

§8 Therefore, hence by permuting these quantities p, q, r we obtain the
following reductions(

p
q

)(
p + q

r

)
=
( p

r

)( p + r
q

)
=
(q

r

)(q + r
p

)
,

whence from some of the given formulas many others can be determined. As
if it is q + r = n or r = n− q, because of(

q + r
p

)
=

1
p

and
(q

r

)
=

π

n sin qπ
n

it will be (
p
q

)(
p + q
n− q

)
=

π

np sin qπ
n

and also (
p

n− q

)(
n + p− q

q

)
=

π

np sin qπ
n

.

Further, if it is p + q + r = n or r = n− p− q, it will be

π

n sin rπ
n

=
π

n sin qπ
n

( p
r

)
=

π

n sin pπ
n

(q
r

)
,

whence extraordinary reductions of the ones to the others arise, by means
of which the amount of quadratures necessary for our scope is vehemently
decreased.
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§9 But furthermore, by assuming determined numbers for p, q, r we obtain
the following equalities of the products of two formulas

(
1
1

)(
2
2

)
=

(
2
1

)(
3
1

)
(

1
1

)(
3
2

)
=

(
3
1

)(
4
1

)
(

2
1

)(
3
3

)
=

(
3
1

)(
4
2

)
=

(
3
2

)(
5
1

)
(

2
2

)(
4
3

)
=

(
3
2

)(
5
2

)
(

3
1

)(
4
3

)
=

(
3
3

)(
6
1

)
(

3
2

)(
5
3

)
=

(
3
3

)(
6
2

)
(

2
2

)(
4
4

)
=

(
4
2

)(
6
2

)
(

3
1

)(
4
4

)
=

(
4
1

)(
5
3

)
=

(
4
3

)(
7
1

)
(

2
1

)(
5
3

)
=

(
5
1

)(
6
2

)
=

(
5
2

)(
7
1

)
(

1
1

)(
6
2

)
=

(
6
1

)(
7
1

)
etc.,

where certainly many occur, which are already contained in the remaining
ones.

§10 Having mentioned these principles in advance I will divide the general
formula

∫ xp−1dx
n
√

(1−xn)n−q
, in which I assume the numbers p and q not to exceed

the exponent n, into classes according to the exponent n, such that the values
n = 1, n = 2, n = 3, n = 4 etc. will yield the first, second, third etc. class.

And the first class, in which it is n = 1, contains the single formula
( 1

1

)
, whose

value is = 1. But the second class, in which it is n = 2, contains these formulas( 1
1

)
,
( 2

1

)
and

( 2
2

)
, whose expansion is manifest per se. The third class, in

which it is n = 3, has these
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(
1
1

)
,
(

2
1

)
,
(

3
1

)
,
(

2
2

)
,
(

3
2

)
,
(

3
3

)
.

But the firth class, in which it is n = 4, on the other hand these

(
1
1

)
,
(

2
1

)
,
(

3
1

)
,
(

4
1

)
,
(

2
2

)
,
(

3
2

)
,
(

4
2

)
,
(

3
3

)
,
(

4
3

)
,
(

4
4

)
;

and so in the following classes the number of the formulas increases according
to the triangular numbers. Therefore, let us go through these classes in order.

2. Class of the form
∫ xp−1dx

2
√
(1− x2)2−q

=

(
p
q

)
Here it is certainly perspicuous that these formulas are expressed either
absolutely or by means of the quadrature of the circle; for, these

( 2
1

)
and( 2

2

)
are given absolutely and the remaining one

( 1
1

)
because of 1 + 1 = 2

is π
2 sin π

2
= π

2 ; therefore, if for the sake of brevity we set π
2 = α, as we will

certainly do it in the following cases, all formulas of this class are defined this
way:

(
2
1

)
= 1,

(
2
2

)
=

1
2

;(
1
1

)
= α.

3. Class of the form
∫ xp−1dx

3
√
(1− x3)3−q

=

(
p
q

)
Since here it is n = 3, the formula involving the quadrature of the circle is(

2
1

)
=

π

3 sin π
3

;

therefore, let us put
( 2

1

)
= α; but the remaining formulas, which are not given

absolutely, involve a higher quadrature and the formula
( 1

1

)
, which we will

indicate by the letter A; having conceded this we will be able to assign the
values of all formulas of this class:
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(
3
1

)
= 1,

(
3
2

)
= 1

1
2

,
(

3
3

)
=

1
3

,(
2
1

)
= α,

(
2
2

)
=

α

A
;(

1
1

)
= A.

4. class of the form
∫ xp−1dx

4
√
(1− x4)4−q

=

(
p
q

)
Since here it is n = 4, we have two formulas depending on the quadrature of
the circle, whose values, since they are known, we want to indicate this way:(

3
1

)
=

π

4 sin π
4
= α and

(
2
2

)
=

π

4 sin 2π
4

= β.

Furthermore, one single formula involving a higher quadrature is necessary,
having conceded which we will know all the remaining ones. For, let us put( 2

1

)
= A and all formulas of this class will be determined this way:

(
4
1

)
= 1,

(
4
2

)
=

1
2

,
(

4
3

)
=

1
3

,
(

4
4

)
=

1
4

;(
3
1

)
= α,

(
3
2

)
=

β

A
,
(

3
3

)
=

α

2A
;(

2
1

)
= A,

(
2
2

)
= β;(

1
1

)
=

αA
β

.

5. Class of the form
∫ xp−1dx

5
√
(1− x5)5−q

=

(
p
q

)
Since here it is n = 5, let us immediately note the formulas depending on the
quadrature of the circle(

4
1

)
=

π

5 sin π
5
= α,

(
3
2

)
=

π

5 sin 2π
5

= β.
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But additionally two new quadratures peculiar to this class are necessary,
which we will denote this way(

3
1

)
= A and

(
2
2

)
= B,

from which all remaining ones will be determined as this:

(
5
1

)
= 1,

(
5
2

)
=

1
2

,
(

5
3

)
=

1
3

,
(

5
4

)
=

1
4

,
(

5
5

)
= 1,(

4
1

)
= α,

(
4
2

)
=

β

A
,
(

4
3

)
=

β

2B
,
(

4
4

)
=

α

3A
;(

3
1

)
= A,

(
3
2

)
= β,

(
3
3

)
=

ββ

αB
;(

2
1

)
=

αB
β

,
(

2
2

)
= B;(

1
1

)
=

αA
β

.

6. Class of the form
∫ xp−1dx

6
√
(1− x6)6−q

=

(
p
q

)
Here it is n = 6 and the formulas involving the quadrature of the circle are

(
5
1

)
=

π

6 sin π
6
= α,

(
4
2

)
=

π

6 sin 2π
6

= β,
(

3
3

)
=

π

6 sin 3π
6

= γ.

But the values of all remaining ones additionally depend on these two qua-
dratures (

4
1

)
= A and

(
3
2

)
= B

and they are detected to behave this way:
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(
6
1

)
= 1,

(
6
2

)
=

1
2

,
(

6
3

)
=

1
3

,
(

6
4

)
=

1
4

,
(

6
5

)
=

1
5

,
(

6
6

)
=

1
6

;(
5
1

)
= α,

(
5
2

)
=

β

A
,
(

5
3

)
=

γ

2B
,
(

5
4

)
=

β

3B
,

(
5
5

)
=

α

4A
,(

4
1

)
= A,

(
4
2

)
= β,

(
4
3

)
=

βγ

αB
,
(

4
4

)
=

βγA
2αBB

;(
3
1

)
=

αB
β

,
(

3
2

)
= B,

(
3
3

)
= γ;(

2
1

)
=

αB
γ

,
(

2
2

)
=

αBB
γA

;(
1
1

)
=

αA
β

.

7. Class of the form
∫ xp−1dx

7
√
(1− x7)7−q

=

(
p
q

)
Since it is n = 7, denote the formulas depending on the quadrature of the
circle this way

(
6
1

)
=

π

7 sin π
7
= α,

(
5
2

)
=

π

7 sin 2π
7

= β,
(

4
3

)
=

π

7 sin 3π
7

= γ,

furthermore, introduce these quadratures(
5
1

)
= A,

(
4
2

)
= B,

(
3
3

)
= C,

having given which the formulas will be determined this way:
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(
7
1

)
= 1,

(
7
2

)
=

1
2

,
(

7
3

)
=

1
3

,
(

7
4

)
=

1
4

,
(

7
4

)
=

1
5

,
(

7
6

)
=

1
6

,
(

7
7

)
=

1
7

;(
6
1

)
= α,

(
6
2

)
=

β

A
,
(

6
3

)
=

γ

2B
,
(

6
4

)
=

γ

3C
,
(

6
5

)
=

γ

3C
,
(

6
6

)
=

α

5A
;(

5
1

)
= A,

(
5
2

)
= β,

(
5
3

)
=

βγ

αB
,
(

5
4

)
=

γγA
2αBC

,
(

5
5

)
=

βγA
3αBC

;(
3
1

)
=

αC
γ

,
(

3
2

)
=

αBC
γA

,
(

3
3

)
= C;(

2
1

)
=

αB
γ

,
(

2
2

)
=

αβBC
γγA

;(
1
1

)
=

αA
β

.

8. Class of the form
∫ xp−1dx

8
√
(1− x8)8−q

=

(
p
q

)
Since here it is n = 8, the formulas involving the quadrature of the circle will
be

(
7
1

)
=

π

8 sin π
8

= α,
(

6
2

)
=

π

8 sin 2π
8

= β,(
5
3

)
=

π

8 sin 3π
8

= γ,
(

4
4

)
=

π

8 sin 4π
8

= δ.

Now, on the other hand consider these three formulas as known(
6
1

)
= A,

(
5
2

)
= B and

(
4
3

)
= C

and from these the formulas of this class will be determined this way:
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(
8
1

)
= 1,

(
8
2

)
=

1
2

,
(

8
3

)
=

1
3

,
(

8
4

)
=

1
4

,
(

8
5

)
=

1
5

,
(

8
6

)
=

1
6

,
(

8
7

)
=

1
7

,
(

8
8

)
=

1
8

;(
7
1

)
= α,

(
7
2

)
=

β

A
,
(

7
3

)
=

γ

2B
,
(

7
4

)
=

δ

3C
,
(

7
5

)
=

γ

4C
,
(

7
6

)
=

β

5B
,
(

7
7

)
=

α

6A
;(

6
1

)
= A,

(
6
2

)
= β,

(
6
3

)
=

βγ

αB
,
(

6
4

)
=

γδA
2αBC

,
(

6
5

)
=

γδA
3αCC

,
(

6
6

)
=

βγA
4αBC

;(
5
1

)
=

αB
β

,
(

5
2

)
= B,

(
5
3

)
= γ,

(
5
4

)
=

γδ

αC
,
(

5
5

)
=

γγδA
2αβCC

;(
4
1

)
=

αC
γ

,
(

4
2

)
=

αBC
γA

,
(

4
3

)
= C,

(
4
4

)
= δ;(

3
1

)
=

αC
δ

,
(

3
2

)
=

αβCC
γδA

,
(

3
3

)
=

αCC
δA

;(
2
1

)
=

αB
γ

,
(

2
2

)
=

αβBC
γδA

;(
1
1

)
=

αA
β

.

Hence it is possible to continue these reductions to the following classes arbi-
trarily far. Therefore, let us explain, how the integrals of the single formulas
will behave in general.

Expansion of the general form
∫ xp−1dx

n
√
(1− xn)n−q

=

(
p
q

)
Therefore, these formulas are absolutely integrable(n

1

)
= 1,

(n
2

)
=

1
2

,
(n

3

)
=

1
3

,
(n

4

)
=

1
4

etc.,

further, the formulas depending on the quadrature of the circle are

(
n− 1

1

)
= α,

(
n− 2

2

)
= β,

(
n− 3

3

)
= γ,

(
n− 4

4

)
= δ etc.,

the progression of which formulas finally comes back to itself, since it also is

(
4

n− 4

)
= δ,

(
3

n− 3

)
= γ,

(
2

n− 2

)
= β,

(
1

n− 1

)
= α.
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Furthermore, also higher quadratures must be used, which are represented
this way

(
n− 2

1

)
= A,

(
n− 3

2

)
= B,

(
n− 4

3

)
= C,

(
n− 5

4

)
= D etc.,

whose number is immediately determined in each case, since these formulas
finally come back to themselves.

But having admitted these formulas, one will be able to determine completely
all formulas belonging to the same class. But by going backwards from the
formula

( n−1
1

)
= α, as we ordered the formulas above, we will have

(
n− 1

1

)
= α,

(
n− 2

1

)
= A,

(
n− 3

1

)
=

αB
β

,
(

n− 4
1

)
=

αC
γ

,(
n− 5

1

)
=

αD
δ

,
(

n− 6
1

)
=

αE
ε

etc.,

which values taken backwards behave this way(
1
1

)
=

αA
β

,
(

2
1

)
=

αB
γ

,
(

3
1

)
=

αC
δ

etc.

But then by proceeding horizontally from the same formula
( n−1

1

)
= α these

formula are defined

(
n− 1

1

)
= α,

(
n− 1

2

)
=

β

A
,
(

n− 1
3

)
=

γ

2B
,
(

n− 1
4

)
=

δ

3C
etc.,

the last of which will be (
n− 1
n− 1

)
=

α

(n− 2)A
,

the penultimate (
n− 1
n− 2

)
=

β

(n− 3)B
,

the antepenultimate (
n− 1
n− 3

)
=

γ

(n− 4)C

13



etc.

In similar manner so by descending as proceeding horizontally from the
formula

( n−2
2

)
= β we will obtain the values of the others and by descending,

of course,

(
n− 2

2

)
= β,

(
n− 3

2

)
= B,

(
n− 4

2

)
=

αBC
γA

,
(

n− 5
2

)
=

αβCD
γδA

,

(
n− 6

2

)
=

αβDE
δεA

,
(

n− 7
2

)
=

αβEF
εζ A

etc.,

where the last will be (
2
2

)
=

αβBC
γδA

,

the penultimate (
3
2

)
=

αβCD
δεA

etc.;

but by proceeding horizontally

(
n− 2

2

)
= β,

(
n− 2

3

)
=

βγ

αB
,
(

n− 2
4

)
=

γδA
2αBC

,
(

n− 2
5

)
=

δεA
3αCD

,

(
n− 2

6

)
=

εζ A
4αDE

,
(

n− 2
7

)
=

ζηA
5αEF

etc.,

the last of which will be (
n− 2
n− 2

)
=

βγA
(n− 4)αBC

,

the penultimate (
n− 2
n− 3

)
=

γδA
(n− 5)αCD

etc.

14



Further, by descending from the formula
( n−3

n−3

)
= γ we get to these formulas

(
n− 3

3

)
= γ,

(
n− 4

4

)
= C,

(
n− 5

3

)
=

αCD
δA

,
(

n− 6
3

)
=

αβCDE
δεAB

,

(
n− 7

3

)
=

αβγDEF
δεζ AB

,
(

n− 8
3

)
=

αβγEFG
εζηAB

etc.

and by proceeding horizontally

(
n− 3

3

)
= γ,

(
n− 3

4

)
=

δγ

αC
,
(

n− 3
5

)
=

γδεA
2αβCD

,
(

n− 3
6

)
=

δεζ AB
3αβCDE

,

(
n− 3

7

)
=

εζηAB
4αβDEF

,
(

ζηθAB
5αβEFG

)
etc.

In the same way by descending from the formula
( n−4

4

)
= δ we obtain

(
n− 4

4

)
= δ,

(
n− 5

4

)
= D,

(
n− 6

4

)
=

αDE
εA

,
(

n− 7
4

)
=

αβDEF
εζ AB

,

(
n− 8

4

)
=

αβγDEFG
εζηABC

,
(

n− 9
4

)
=

αβγδEFGH
εζηθABC

etc.

and by proceeding horizontally

(
n− 4

4

)
= δ,

(
n− 4

5

)
=

δε

αD
,
(

n− 4
6

)
=

δεζ A
2αβDE

,
(

n− 4
7

)
=

δεζηAB
3αβγDEF

,

(
n− 4

8

)
=

εζηθABC
4αβγDEFG

,
(

n− 4
9

)
=

ζηθιABC
5αβγEFGH

etc.

And this way finally the values of all formulas are found.

Let us accommodate these general reductions to the

9. Class of form
∫ xp−1dx

9
√
(1− x9)9−q

=

(
p
q

)
There because of n = 9 the formulas involving the quadrature of the circle
will be

15



(
8
1

)
= α,

(
7
2

)
= β,

(
6
3

)
= γ,

(
5
4

)
= δ;

hence ε = δ, ζ = γ, η = β, θ = α.

Further, put the new quadratures required for this(
7
1

)
= A,

(
6
2

)
= B,

(
5
3

)
= C,

(
4
4

)
= D

and so it will be

E = C, F = B and G = A;

and having conceded these four values one will be able to assign the values of
all formulas of the ninth class, which we want to represent in the same order
as we did before:(

9
1

)
= 1,

(
9
2

)
=

1
2

,
(

9
3

)
=

1
3

,
(

9
4

)
=

1
4

,
(

9
5

)
=

1
5

,(
9
6

)
=

1
6

,
(

9
7

)
=

1
7

,
(

9
8

)
=

1
8

,
(

9
9

)
=

1
9

;

(
8
1

)
= α,

(
8
2

)
=

β

A
,
(

8
3

)
=

γ

2B
,
(

8
4

)
=

δ

3C
,
(

8
5

)
=

δ

4D
,(

8
6

)
=

γ

5C
,
(

8
7

)
=

β

6B
,
(

8
8

)
=

α

7A
;

(
7
1

)
= A,

(
7
2

)
= β,

(
7
3

)
=

βγ

αB
,
(

7
4

)
=

γδA
2αBC

,
(

7
5

)
=

δδA
3αCD

,(
7
6

)
=

γδA
4αCD

,
(

7
7

)
=

βγA
5αBC

;

(
6
1

)
=

αB
β

,
(

6
2

)
= B,

(
6
3

)
= γ,

(
6
4

)
=

γδ

αC
,
(

6
5

)
=

γδδA
2αβCD

,
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V66 =
γδδAB

3αβCCD
;

(
5
1

)
=

αC
γ

,
(

5
2

)
=

αBC
γA

,
(

5
3

)
= C,

(
5
4

)
= δ,

(
5
5

)
=

δδ

αD
;

(
4
1

)
=

αD
δ

,
(

4
2

)
=

αβCD
γδA

,
(

4
3

)
=

αCD
δA

,
(

4
4

)
= D;

(
3
1

)
=

αC
δ

,
(

3
2

)
0

αβCD
δδA

,
(

3
3

)
=

αβCCD
δδAB

;

(
2
1

)
=

αB
γ

,
(

2
2

)
=

αβBC
γδA

;

(
1
1

)
=

αA
β

.

The structure of these formula deserves it to be noted even while proceeding
diagonally from the left to the right, where certainly two species of progressi-
ons occur, depending on whether we start from the first vertical series or from
the supreme horizontal series. This way, first by beginning from the vertical
series:
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(
n− 1

1

)
= α,

(
n− 2

2

)
=

β

α
×
(

n− 1
1

)
,
(

n− 3
3

)
=

γ

β
×
(

n− 2
2

)
,
(

n− 4
4

)
=

δ

γ
×
(

n− 3
3

)
(

n− 2
1

)
= A,

(
n− 3

2

)
=

B
A
×
(

n− 2
1

)
,
(

n− 4
3

)
=

C
B
×
(

n− 3
2

)
,
(

n− 5
4

)
=

D
C
×
(

n− 4
3

)
(

n− 3
1

)
=

αB
β

,
(

n− 4
2

)
=

βC
γA
×
(

n− 3
1

)
,
(

n− 5
3

)
=

γD
δB
×
(

n− 4
2

)
,
(

n− 6
4

)
=

δE
εC
×
(

n− 5
3

)
(

n− 4
1

)
=

αC
γ

,
(

n− 5
2

)
=

βD
δA
×
(

n− 4
1

)
,
(

n− 6
3

)
=

γE
εB
×
(

n− 5
2

)
,
(

n− 7
4

)
=

δF
ζC
×
(

n− 6
3

)
(

n− 5
1

)
=

αD
δ

,
(

n− 6
2

)
=

βE
εA
×
(

n− 5
1

)
,
(

n− 7
3

)
=

γF
ζB
×
(

n− 6
2

)
,
(

n− 8
4

)
=

δG
ηC
×
(

n− 7
3

)
(

n− 6
1

)
=

αE
ε

,
(

n− 7
2

)
=

βF
ζ A
×
(

n− 6
1

)
,
(

n− 8
3

)
=

γG
ηB
×
(

n− 7
2

)
,
(

n− 9
4

)
=

δH
θC
×
(

n− 6
3

)
etc.

further, by starting from the supreme horizontal one:

(n
1

)
= 1,

(
n− 1

2

)
=

β

A
×
(n

1

)
,
(

n− 2
3

)
=

γA
αB
×
(

n− 1
2

)
,
(

n− 3
4

)
=

δB
βC
×
(

n− 2
3

)
(n

2

)
=

1
2

,
(

n− 1
3

)
=

γ

B
×
(n

2

)
,
(

n− 2
4

)
=

δA
αC
×
(

n− 1
3

)
,
(

n− 3
5

)
=

εB
βD
×
(

n− 2
4

)
(n

3

)
=

1
3

,
(

n− 1
4

)
=

δ

C
×
(n

3

)
,
(

n− 2
5

)
=

εA
αD
×
(

n− 1
4

)
,
(

n− 3
6

)
=

ζB
βE
×
(

n− 2
5

)
(n

4

)
=

1
4

,
(

n− 1
5

)
=

ε

D
×
(n

4

)
,
(

n− 2
6

)
=

ζ A
αE
×
(

n− 1
5

)
,
(

n− 3
7

)
=

ηB
βF
×
(

n− 2
6

)
(n

5

)
=

1
5

,
(

n− 1
6

)
=

ζ

E
×
(n

5

)
,
(

n− 2
7

)
=

ηA
αF
×
(

n− 1
6

)
,
(

n− 3
8

)
=

θB
βG
×
(

n− 2
7

)
etc.

Here the law, according to which these formulas depend on each other, is
sufficiently plain, if we only note that in each of the two series of letters α, β,
γ, δ etc. and A, B, C, D etc. the terms preceding the first are equal to each
other.

CONCLUSION

Therefore, whereas we can exhibit the formula of the second class having
conceded only the quadrature of the circle, the formulas of the third class
additionally require a quadrature contained either in this formula
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∫ dx
3
√
(1− x3)2

= A or in this one
∫ xdx

3
√
(1− x3)

=
α

A
,

since, having given one, at the same time the other is given. If we express
these formulas by means of an infinite product, their value is found as∫ dx

3
√
(1− x3)2

=
2
1
· 3 · 5

4 · 4 ·
6 · 8
7 · 7 ·

9 · 11
10 · 10

· 12 · 14
13 · 13

· etc.,

whence its quantity can be calculated approximately sufficiently conveniently;
in the same way it is∫ xdx

3
√
(1− x3)

= 1 · 3 · 7
5 · 5 ·

6 · 10
8 · 8 ·

9 · 13
11 · 11

· 12 · 16
14 · 14

· etc.

Further, we will be able to integrate all formulas of the fourth class, if only
except for the quadrature of the circle one of these four formulas was known( 2

1

)
,
( 1

1

)
,
( 3

2

)
,
( 3

3

)
, which yield these forms∫ xdx

4
√
(1− x4)3

=
1
2

∫ dx
4
√
(1− xx)3

=
∫ dx√

(1− x4)
= A,

∫ dx
4
√
(1− x4)3

=
αA
β

,
∫ xxdx

4
√
(1− x4)

=
α

2A
,

∫ xxdx√
(1− x4)

=
∫ xdx

4
√
(1− x4)

=
1
2

∫ dx
4
√
(1− xx)

=
β

A
;

but by means of an infinite product it will be

A =
3

1 · 2 ·
4 · 7
5 · 6 ·

8 · 11
9 · 10

· 12 · 15
13 · 14

· 16 · 19
17 · 18

· etc.

The fifth class requires the two higher quadratures
( 3

1

)
= A and

( 2
2

)
= B,

instead of which two others depending on them could be assumed, which
might seem simpler, even though because of the prime number 5 the ones can
hardly be considered as simpler as the others.

For the sixth class also these two classes are required
( 4

1

)
= A and

( 3
2

)
= B.

But here instead of the one the other, which was necessary in the third class,
can be assumed, that only a single new one is to be used. For, because it is(

2
2

)
=
∫ xdx

6
√
(1− x6)4

=
1
2

∫ dx
3
√
(1− x3)2

=
αBB
γA

,
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it will be

2αBB
γA

=
∫ dx

3
√
(1− x3)2

,

which is the formula required for the third class. Therefore, having given this
one, if this formula becomes known(

3
2

)
=
∫ xdx√

1− x6
=

1
2

∫ dx√
(1− x3)

= B

or even this one(
4
3

)
=
∫ xxdx

3
√
(1− x6)

=
1
3

∫ dx
3
√
(1− xx)

=
βγ

αB
,

which are the simplest in this kind, all remaining ones can be defined by
means of these. But having combined these it is plain that it will be∫ dx√

(1− x3)
·
∫ dx

3
√
(1− xx)

=
6βγ

α
=

π√
3

.

In similar manner, from the formulas of the first class one calculates∫ dx√
1− x4

·
∫ dx

4
√
(1− x2)

=
π

2
,

of which kind a lot of theorems can hence be deduced, among which this is
especially notable

∫ dx
m
√
(1− xn)

·
∫ dx

n
√

1− xn
=

π sin (m−n)
mn π

(m− n) sin π
m · sin π

n
,

which, if m and n are fractional numbers, is transmuted into this form

∫ xq−1dx
r
√
(1− xp)s

·
∫ xs−1dx

p
√
(1− xr)q

=
π sin

(
s
r −

q
p

)
π

(ps− qr) sin qπ
p · sin sπ

r
.

On the other hand it is in general

(
n− p

q

)(
n− q

p

)
=

(
n−p

p

) (
n−q

q

)
(q− p)

(
n−q+p

q−p

) ,
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which yields this form

∫ xp−1dx
n
√
(1− xn)q

·
∫ xq−1dx

n
√
(1− xn)p

=
π sin (q−p)π

n

n(q− p) sin ππ
n · sin qπ

n
,

whence not only the preceding theorems, but also many others are easily
derived. For, having put n = pq

m we will have

∫ xm−1dx
n
√
(1− xq)m

·
∫ xm−1dx

q
√
(1− xp)m

=
π sin

(
m
p −

m
q

)
π

m(q− p) sin mπ
q · sin mπ

p
,

which can be extend further this way

∫ xp−1dx
n
√
(1− xm)q

·
∫ xq−1dx

m
√
(1− xn)p

=
π sin

( q
n −

p
m

)
π

(mq− np) sin pπ
m · sin qπ

n
;

if in this one puts n = 2q, it will be

∫ xp−1dx√
(1− xm)

·
∫ xq−1dx

m
√
(1− x2q)p

=
π cos pπ

m

q(m− 2p) sin pπ
m

.

But if in the last integral formula one puts x2q = 1− ym, it will be

∫ xq−1dx
m
√
(1− x2q)p

=
m
2q

∫ ym−p−1dy√
(1− ym)

,

whence having written x for y

∫ xp−1dx√
1− xm

·
∫ xm−p−1dx√

(1− xm)
=

2π cos pπ
m

m(m− 2p) sin ppi
m

.

If in similar manner in general from the other integral formula one puts
1− xn = ym, it will be

∫ xq−1dx
m
√
(1− xn)p

=
m
n

∫ ym−p−1dy
n
√
(1− ym)n−q

,

whence having again written x for y one obtains

∫ xp−1dx
n
√
(1− xm)q

·
∫ xm−p−1dx

n
√
(1− xm)n−q

=
nπ sin

( q
n −

p
m

)
π

m(mq− np) sin pπ
m · sin qπ

n
,
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which value is reduced to nπ
m(mq−np)

(
cot pπ

m − cot qπ
n

)
. And hence this more

convenient form results

∫ x
m−r

2 −1dx
n
√
(1− xm)

n−s
2

·
∫ x

m+r
2 −1dx

n
√
(1− xm)

n+s
2

=
2nπ

(
tan rπ

2m − tan sπ
2n

)
m(nr−ms)

.

Since the foundation of these reductions lies in this equality

(
n− p

q

)(
n− q

p

)
=

(
n−p

p

) (
n−q

q

)
(q− p)

(
n−q+p

q−p

) ,

which is reduced to this form

(
n− p

q

)(
n− q

p

)(
n− q + p

q− p

)
=

(
n

q− p

)(
n− p

p

)(
n− q

q

)
,

its truth can shown directly this way.

Having taken these three numbers n− q, q− p, q for those three numbers p,
q, r in the reduction given in § 8 we will have(

n− q
q− p

)(
n− p

q

)
=

(
n− q

q

)(
n

q− p

)
;

but then having taken n− q, q− p, p instead of them it will be(
n− q

p

)(
n− q + p

q− p

)
=

(
n− q
q− p

)(
n− p

p

)
,

having multiplied which equations by each other and having got rid of the
formula

(
n−1
q−p

)
common to both sides by division it will be

(
n− p

q

)(
n− q

p

)(
n− q + p

q− p

)
=

(
n

q− p

)(
n− p

p

)(
n− q

q

)
.

Yes, even an equality not depending on the exponent n of three formulas of
this kind can be exhibited, of course(

s
p

)(
r + s

q

)(
p + s

r

)
=

(
r + s

p

)(
s
q

)(
q + s

r

)
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=

(
r
p

)(
r + s

q

)(
p + r

s

)
=

(
r + s

p

)(
r
q

)(
q + r

s

)
,

which involves four letters not depending on n and is similar to the equality
of the products of two formulas(

r
p

)(
p + r

q

)
=

(
q + r

p

)(q
r

)
=

(
q
p

)(
p + q

r

)
.

But one also has this equality of the products of three formulas

(
p
q

)( r
s

)( p + q
r + s

)
=
(q

r

)( s
p

)(
q + r
p + s

)
=
( p

r

) (q
s

)( p + r
q + s

)

=

(
p
q

)(
p + q

r

)(
p + q + r

s

)
=

(
p
q

)(
p + q

s

)(
p + q + s

r

)
etc.

For, in these the letters p, q, r, s can be arbitrarily permuted.
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